

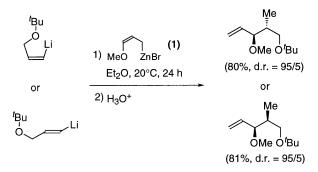
Tetrahedron Letters 41 (2000) 1733-1736

TETRAHEDRON LETTERS

Use of metallated allylic ethers for the elaboration of vicinally trisubstituted linear substrates or cyclopropyl carbinols

Franck Ferreira, Christelle Herse, Eric Riguet and Jean F. Normant *

Laboratoire de Chimie des Organo-éléments, associé au CNRS, Université P. & M. Curie, Tour 44-45, Boîte 183, 4 Place Jussieu, 75252 Paris Cedex 05, France

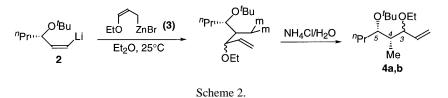

Received 19 November 1999; accepted 23 December 1999

Abstract

Allyl zinc reagents derived from allylic ethers carbometallate vinyllithiums derived from secondary allylic ethers, leading to linear 3,5-dialkoxy-4-methyl-1-alkenes, or to 1-vinyl-2-alkoxyalkyl cyclopropanes diastereo-selectively. © 2000 Elsevier Science Ltd. All rights reserved.

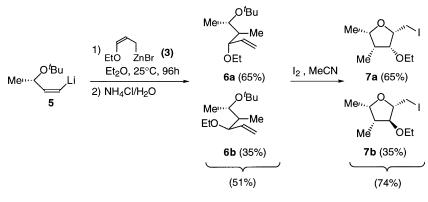
Keywords: carbometallation; zinc reagents; diastereoselection; cyclopropanation.

Allyl zincation of vinyl metals by heterosubstituted allyl zinc reagents is an efficient stereoselective process for the elaboration of *syn-* or *anti-*1,3-dialkoxy-2-methyl-4-pentenes¹ (Scheme 1).


Scheme 1.

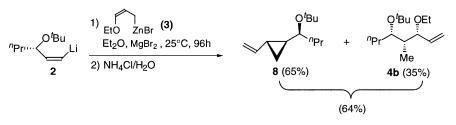
Such high diastereoselection is obtained when Et_2O (and not THF) is used as solvent, but this less basic solvent raises some difficulties for the preparation of the lithiated precursor of $1.^2$ sec-Butyllithium deprotonates allyl methyl ether in Et_2O when a molar equivalent of TMEDA is used² but the subsequent carbometallation then requires 24 h at 20°C.

^{*} Corresponding author. Fax: 00 33 1 44 27 75 67; e-mail: normant@ccr.jussieu.fr (J. F. Normant)

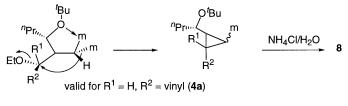

^{0040-4039/00/}\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. *P1I:* S0040-4039(00)00025-3

We report here the carbometallation by reagent **3** of a lithiated *secondary* allylic ether 2^{3} , in order to create three vicinal stereogenic centres (Scheme 2).

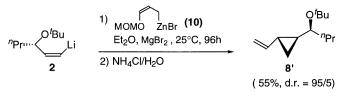
When the reaction is performed as in the previous case, **4** is obtained in only 28% yield after 72 h at 25°C, and as a mixture of two diastereomers in a 65:35 ratio. Assuming that the presence of TMEDA slows down the addition reaction, we first checked that the metallation of allyl ethyl ether in Et₂O was possible in the presence of only 10% TMEDA. In these conditions **4** was then obtained in 52% yield, although with the same (65:35) diastereomeric ratio. As compared with the 95:5 ratio in Scheme 1, this result could be either due to a competitive face choice on substrate **2** (affecting the C4/C5 relationship in **4**) or to the *cisoid* or *transoid* nature of **3** in the transition state (affecting the C3/C4 relationship in **4**).


The structures of 4a,b could not be established by iodoetherification⁴ followed by NOE measurements. Nevertheless, the methylated homologue 5 of 2 led to the same ratio of stereomers 6a:6b=65:35 which gave the cyclised products 7a:7b=65:35, where NOE was perfectly discernible (see Scheme 3) and showed that they differed only by the position of the ethoxy group.

Scheme 3.


Thus, organozinc **3** has reacted under both *cisoid* (major) and *transoid* (minor) forms, with a good facial selectivity, on **5**.

We then checked a possible acceleration of the reaction by MgBr₂. This was indeed the case, but this Lewis acid also promoted a γ -elimination of the ethoxy moiety, so that the initial 65:35 ratio of isomers became a 65:35 ratio of a pure cyclopropyl derivative **8** and a pure linear compound **4b** (Scheme 4).


Scheme 4.

In other words, during this cyclisation, only the stereochemistry at C3 is involved, one diastereomeric bismetallic species (the major) is prone to γ -elimination, and the other is not. Considering that this elimination arises from a conformer where the *m*-C-C-LG arrangement adopts a W shape,⁵ it seemed plausible that among the two diastereomers only the one with R¹=H and R²=vinyl will obviate a steric interaction between the vinyl and the –CH(^{*n*}Pr)O^{*t*}Bu neighbours, and will adopt the required conformation (Scheme 5).

Scheme 5.

Although 8^6 and 4b could be separated by column chromatography, we looked for a more selective substrate and turned to the lithiated MOM ether 10, corresponding to 3. The metallated allyl ether 10 was also prepared in Et₂O with *sec*-butyllithium and a catalytic amount of TMEDA, at -70° C, followed by treatment with ZnBr₂ and MgBr₂ (Scheme 6).

Scheme 6.

The carbometallation proceeded in the same way, and although yield remained modest, we were pleased to see that the diastereomeric ratio of the intermediate *gem*-bismetallics was enhanced to 95:5, leading to $\mathbf{8}'$ identical to $\mathbf{8}$. The minor diastereomer was present in such a small amount that its stereochemistry could not be established.

Thus, we now have at hand an expeditious access to 2-substituted *trans* cyclopropyl *syn* secondary carbinols with three defined stereocentres. This pattern is present in several metabolites found in marine invertebrates and algae, which have been the target of several synthetic approaches,⁷ particularly the diastereoselective cyclopropanations.⁸ In our case, the vinyl synthon allows for chain extention and functionalisation.

Acknowledgements

We thank Dr. I. Marek (Technion, Haifa, Israel) for many fruitful discussions. We also thank Professor A. Charette for providing us with spectra of *syn* and *anti* cyclopropyl carbinols.

References

 ⁽a) Marek, I.; Lefrançois, J.-M.; Normant, J. F. J. Org. Chem. 1994, 59, 4154–4161. (b) Knochel, P.; Xia, C.; Yeh, M. C. P. Tetrahedron Lett. 1988, 29, 6697–6700. (c) For a general review, see: Marek, I.; Normant, J. F. Metal-catalysed cross-coupling reactions; Diederich, F.; Stang, P., Eds.; Wiley-VCH: Weinheim, 1998; pp. 271–337.

- (a) Evans, D. A.; Andress, G. C.; Buckwalter, B. J. Am. Chem. Soc. 1974, 96, 5560–5561. (b) Still, W. C.; MacDonald, T. L. J. Am. Chem. Soc. 1974, 96, 5561–5563. (c) Yamamoto, Y. In Comprehensive Organic Synthesis; Trost, B.; Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 2, pp. 55.
- 3. Marek, I.; Lefrançois, J.-M.; Normant, J. F. Bull. Soc. Chim. Fr. 1994, 131, 910-918.
- 4. Marek, I.; Lefrançois, J.-M.; Normant, J. F. Tetrahedron Lett. 1992, 33, 1747-1748.
- 5. For a discussion of such an hypothesis, see: Beruben, D.; Marek, I.; Normant, J. F.; Platzer, N. J. Org. Chem. 1995, 60, 2488–2501.
- 6. Cyclopropane **8**: ¹H NMR (400 MHz, CDCl₃) δ 0.62 (1H, dt, *J*=4.8, 8.6 Hz), 0.73 (1H, ddd, *J*=4.8, 5.8, 8.5 Hz), 0.93 (3H, t, *J*=7.4 Hz), 1.18 (9H, s), 1.37 (4H, m), 1.52 (2H, m), 3.04 (1H, q, *J*=6.3 Hz), 4.85 (1H, dd, *J*=1.7, 10.2 Hz), 5.03 (1H, dd, *J*=1.7, 17.2 Hz), 5.43 (1H, ddd, *J*=8.7, 10.2, 17.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 13.0, 14.9, 19.1, 21.5, 26.9, 29.3, 40.5, 73.1, 73.6, 111.9, 141.8.
- (a) Nagle, D. G.; Gerwik, W. H. J. Org. Chem. 1994, 59, 7227–7237. (b) White, J. D.; Jensen, M. S. J. Am. Chem. Soc. 1995, 117, 6224–6233. (c) Nagasawa, T.; Onoguchi, Y.; Matsumoto, T. Synlett 1995, 1023–1024. (d) Cossy, J.; Blanchard, N.; Hamel, C.; Meyer, C. J. Org. Chem. 1999, 64, 2608–2609. (e) Barrett, A. G. M.; Tam, W. J. Org. Chem. 1997, 62, 4653–4664. (f) Lautens, M.; Delonghe, P. H. M. J. Org. Chem. 1995, 60, 2474–2487.
- 8. (a) Charette, B.; Lebel, H. J. Org. Chem. 1995, 60, 2966–2967. (b) Charette, B.; Juteau, H.; Lebel, H.; Molinaro, C. J. Am. Chem. Soc. 1998, 120, 11943–11952.